长春光机所高速VCSEL研究进展综述

日期:2022-10-27 阅读:232
核心提示:近日,长春光机所王立军院士团队在《中国光学》期刊上发表了题为长春光机所高速垂直腔面发射激光器研究进展的最新论文,团队通过

近日,长春光机所王立军院士团队在《中国光学》期刊上发表了题为“长春光机所高速垂直腔面发射激光器研究进展”的最新论文,团队通过优化VCSEL外延设计和生长、器件设计和制备、以及性能表征技术,在多个波长的高速VCSEL的调制带宽、传输速率、模式、功耗等性能方面取得了显著进展。

随着流媒体、云计算、区块链等新兴消费和社交媒体的出现,互联网流量以每年约60%的速度大幅增长,远远超过思科(Cisco)公司预测。垂直腔面发射激光器(VCSEL)具有阈值电流低、量子效率高、调制带宽高、能耗低等优点,基于VCSEL和多模光纤(MMF)是数据传输的重要组成部分。数据流量的迅速增长牵引VCSEL向更大带宽、更高速率、更低能耗方向发展。

在高速VCSEL调制带宽方面,查尔姆斯理工大学(CUT)、伊利诺伊大学厄巴纳-香槟分校(UIUC)、Finisar等多个研究组都实现了850nm VCSEL近30 GHz的调制带宽。CHENG C L、HAGHIGHI N、SIMPANEN E在940nm、980nm和1060nm波长高速VCSEL研究方面,也分别实现了类似的指标。在高速VCSEL传输速率方面,KUCHTA D M等人采用前馈均衡驱动实现不归零码(NRZ-OOK)调制下71Gb/s数据传输。4电平脉冲幅度调制(PAM4)可进一步提升传输速率,并可通过均衡和前向纠错进一步提升传输速率至200Gbit/s。通过波分复用(WDM),可大大增加光链路的容量和传输速率。单模VCSEL可延长传输距离至2000m以上。在能耗方面,MOSER P实现了56fJ/bit@25Gb/s的超低能耗。

面向高速光通信需求,研究人员从高速VCSEL带宽限制机理和提升方法出发,通过优化VCSEL外延设计和生长、器件设计和制备以及性能表征技术,在多个波长高速VCSEL的调制带宽、传输速率、模式、功耗等性能方面取得了显著进展,可满足不同应用场景。本文接下来第二部分将介绍带宽限制因素和提升方法;第三部分介绍本课题组高速VCSEL的研究进展;第四部分进行总结。

高速VCSEL带宽限制因素

氧化限制型高速VCSEL截面示意图如图1所示。其主要包括有源区,p-和n-布拉格反射镜(DBR),单层或多层氧化孔,苯丙环丁烯(BCB)填平材料,p-、n-电极和共面电极。有源区可为量子阱或量子点。DBR由两种具有不同折射率、每层厚度为四分之一波长的材料交替生长组成;氧化孔可通过湿法氧化高Al组分的氧化层制备。

 

图1 氧化限制型高速VCSEL截面示意图

VCSEL的频率响应可以用传输函数来表征,

 

 

为了提高调制带宽,需要增大驰豫振荡频率,减小阻尼因子和增大寄生截止频率。

......

高速1030nm VCSEL

相比于850nm波长VCSEL,1030nm波长VCSEL在光纤传输中的色散和衰减大大降低,有利于提高传输距离。此外,1030nm VCSEL可应用于850−1060nm波段(间隔30nm)的WDM,提高光纤链路的通信容量和传输速率。

本课题组采用应变InGaAs/GaAsP量子阱、λ/2短光腔和6层氧化物孔设计,提高纵向光限制因子、降低寄生电容,提高VCSEL的3dB带宽。研制的高速1030nm VCSEL模拟、测试表征结果如图2所示。

 

 

图2 (a)设计的VCSEL折射率分布和驻波场分布;(b)氧化后的VCSEL截面SEM;(c)1030nm VCSEL L-I-V;(d)1030nm VCSEL光谱;(e)25℃条件下1030nm VCSEL小信号响应;(f)85℃条件下1030nm VCSEL小信号响应

高速1550nm VCSEL

1550nm VCSEL在光纤中传输损耗小,更适合于长距离光纤传输。目前,1550nm VCSEL技术还不成熟:与长波长有源区相比配的高反射率和低电阻的DBR难以生长,有效电流限制层难以制备、热问题显著。晶圆熔合(WF)技术为高性能DBR难以形成的问题提供了解决方案。在InP衬底上生长有源区,在GaAs衬底上生长热性能好的DBR,然后通过晶圆熔合技术将它们结合在一起,从而获得腔长较短、散热性能较好的1550nm VCSEL。此外,掩埋隧道结(BTJ)结构可减少长波长VCSEL的热效应,并实现对电流的限制。俄罗斯ITMO大学的L.Karachinsky团队通过晶圆融合和BTJ技术制备了1550nm VCSEL。

我们与Karachinsky团队合作,在室温、6mA偏置电流和1V调制电压条件下,提高1550nm VCSEL传输速率至37Gbit/s(3m单模光纤),在误码率BER=10−12下眼宽0.25UI(6.75ps),总抖动75%(20.27ps),如图3所示。

图3(a)高速1550nm VCSEL传输眼图;(b)高速1550nm VCSEL浴盆曲线。BTJ为6μm。

结束语

通过优化VCSEL外延设计和生长、器件设计和制备、以及性能表征技术,在多个波长的高速VCSEL的调制带宽、传输速率、模式、功耗等性能方面取得了显著进展。实现了高速单模940nm VCSEL 27.65GHz调制带宽和53Gbit/s传输速率;通过波分复用基于850nm、880nm、910nm和940nm高速VCSEL实现了200Gbit/s链路方案;通过光子寿命优化,实现了高速VCSEL低至100fJ/bit的超低能耗;实现了1030nm高速VCSEL 25GHz调制带宽;实现了1550nm高速VCSEL 37Gbit/s传输速率。研制的高速VCSEL在高速光通信等有重要应用前景。

本研究获得了国家重点研发计划(No. 2021YFB2801000,No. 2018YFB2201000)、国家自然科学基金(No. 61774156,No.62174159,No. 62061136010)、中国科学院青年创新促进会(No. 2018249)、中德科学中心合作交流项目(No. M0386)、吉林省国际合作项目(No. 20210402055GH)的支持。

 

(来源:MEMS)

 

打赏
联系客服 投诉反馈  顶部