中科院苏州纳米所赵志刚团队Analytical Chemistry:量子点尺寸调控实现半导体SERS基底性能提升和无机小分子检测

日期:2022-05-12 来源:半导体产业网阅读:621
核心提示:中科院苏州纳米所赵志刚研究员团队设计了一系列不同尺寸的氧化钼纳米晶和量子点,发现小尺寸的量子点在晶格缺陷和尺寸效应的双重作用下SERS性能显著提升,提出了基于多重共振耦合电荷转移路径实现高效化学增强效应的SERS作用机制,并实现了对无机小分子联氨(N2H4)的低浓度检测。
   半导体产业网讯:中国科学院苏州纳米技术与纳米仿生研究所获悉,赵志刚研究员团队在量子点尺寸调控研究中获得新进展,并实现半导体SERS基底性能提升和无机小分子检测。相关研究首次实现了半导体SERS基底对无机小分子直接、灵敏的检测,对拓宽半导体SERS基底的应用具有重要意义。该工作以Quantum Effects Enter Semiconductor-based SERS: Multiresonant MoO3·xH2O Quantum Dots Enabling Direct, Sensitive SERS Detection of Small Inorganic Molecules为题发表于Analytical Chemistry。该论文第一作者为博士研究生宋鸽,通讯作者为赵志刚研究员
      表面增强拉曼技术(Surface-enhanced Raman Spectroscopy, SERS)是一种强大的无损、高灵敏、高特异性光谱技术,在反应监测、生物医学检测、环境监测等多个学科中均存在应用价值。近年来,半导体SERS基底的性能调控一直备受关注。然而,由于半导体SERS增强效果普遍较弱,难以应用于散射截面较小的无机物质的检测,因此研究者致力于寻找可以提升半导体基底SERS性能的策略,从而提升半导体SERS基底对无机物质的响应性。  

  基于这一研究目标,中科院苏州纳米所赵志刚研究员团队设计了一系列不同尺寸的氧化钼纳米晶和量子点,发现小尺寸的量子点在晶格缺陷和尺寸效应的双重作用下SERS性能显著提升,提出了基于多重共振耦合电荷转移路径实现高效化学增强效应的SERS作用机制,并实现了对无机小分子联氨(N2H4)的低浓度检测。  

  如图1所示,量子点产生了明显的带隙变化和荧光发光现象,可以归结为尺寸限域效应和小尺寸半导体中产生多重缺陷能级的共同作用。  

图1 量子点能带结构和荧光发光效应表征  

  如图2所示,量子点对多个探针分子产生了灵敏SERS响应,其中值得注意的是对无机小分子联氨具有良好的SERS性能。通过进一步的表征得出量子点表面联氨分子的检测性能具有明显的尺寸依赖性,且在2 nm尺寸下的极限浓度为4*10-5 mol/L。  

图2 量子点的SERS性能表征谱图  

  如图3所示,通过分析不同尺寸下能带结构的变化,提出了2nm量子点高效SERS效应的机制为由于尺寸限域效应和晶格缺陷共同作用下能带结构中存在的多重共振耦合电荷转移路径。  

图3 量子点高效SERS性能作用机制示意图  

  据了解,该工作受到了国家重点研发计划、国家自然科学基金、中国科学院对外合作项目等项目的资助。论文原文地址:https://pubs.acs.org/doi/10.1021/acs.analchem.1c05142 


打赏
联系客服 投诉反馈  顶部